

Seat No.

HB-003-1164003

M. Sc. (Sem. IV) Examination April - 2023 Mathematics : CMT-4003 (Number Theory-II)

Faculty Code : 003 Subject Code : 1164003

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions : (1) There are five questions.

- (2) All questions are compulsory.
- (3) Each question carries 14 marks.

1 Do as directed : (answer any seven)

14

- (a) Find the value of (0, 3, 3, 3, 3, ..., ...) and (-2, 1, 2, 6, 14).
- (b) Express the numbers $\sqrt{7} + 2$ and $\sqrt{3} 1$ in continued fraction expansion.
- (c) Write the statement of Hurwitz's Inequality for x, y > 0 for Farey fractions.
- (d) Find out the values of r_2, r_3 of (0, 2, 2, 2, 2, 2).
- (e) Find the period of $\sqrt{18}$.
- (f) Find four positive integers for which $1 + 2 + 3 + 4 \dots + n$ is a perfect square.
- (g) Find the general solution if any of the equation 131x + 211y = 2.
- (h) If (x, y, z) is a Pythagorean Triplet then show that g.c.d. (y, z) = g.c.d. (x, z).
- (i) There is a polynomial $f_n(x)$ with degree *n*, leading co-efficient 1 and integer coefficients such that $f_n(\sin x) =$ _____, $\forall n \ge 1$ and real *x*.
- (j) Show that, the g.c.d. (x, y) where $\frac{x}{y}$ Farey fraction of the n^{th} row is 1.

HB-003-1164003]

[Contd...

2 Answer any two of the following :

- (1) Prove that, π is an irrational number.
- (2) Prove that, $x^2 143y^2 + 1 = 0$ has no solution in integers.
- (3) Suppose (x_1, y_1) is the smallest positive solution of $x^2 dy^2 = 1$ then prove that:
 - (i) $(x_1 + \sqrt{d}y_1)^n$ is a solution of it for $n \ge 1$.
 - (ii) Every positive solution is of the form $(x_1 + \sqrt{d}y_1)^n$ for some *n*.
- 3 Answer the following:
 - (1) (i) Suppose *r* and *s* are positive integer such that $r > s \ge 1$, (r, s) = 1 and *r* is even then *s* is odd and vice-versa then prove that, the triplet (x, y, z) is a Primitive Pythagorean triplet where $x = r^2 - s^2$, y = 2 rs and $z = r^2 + s^2$.
 - (ii) If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ be a polynomial with integer coefficient with degree *n* and if $\frac{a}{b}$ satisfies f(x) then show that, $b|a_n$ and $a|a_0$

provided (a, b) = 1 and $b \ge 0$.

(2) Solve the linear Diophantine equation 172x + 20y = 1000 by usual method.

OR

- **3** Answer the following:
 - (1) Prove that, the value of f(x) = x⁴ + x³ + x² + x + 1 is a perfect square for x = -1, 0 and 3 and for some values of x, f(x) is not a perfect square.
- (2) Suppose θ is a quadratic irrational such that $\theta > 1$ and $-1 < \theta' < 0$. Prove that, its periodic continued fraction expansion is purely periodic. Justify the result for $\frac{\sqrt{3}+1}{2}$. HB-003-1164003] 2 [Contd...

14

- 4 Answer the following:
 - (1) If p, q is a positive solution of $x^2 ny^2 = 1$, then show that, $\frac{p}{q}$ is a convergent of the continued fraction of \sqrt{n} .
 - (2) (i) Prove that, $x^2 80y^2 = -1$ has no solution in integers.
 - (ii) Prove that, $\lim_{n \to \infty} r_n$ provided its subsequence $\{r_{2n}\}$ has its limit θ , where θ is an irrational. number.
- 5 Answer any two of the following:
 - If a₀, a₁, a₂, ..., a_n, ..., are integers with a_i ≥ 1; ∀i≥1 then prove that, the number θ is and irrational number if and only if the expansion (a₀, a₁, a₂, ..., a_n,) is infinite.
 - (2) If θ is an irrational number and $\frac{a}{b}$ is a rational number then prove that, $b \ge k_{n+1}$ provided $|\theta b - a| < |\theta k_n| - h_n$ for some $n \ge 0$.
 - (3) Find first four positive solution of $x^2 19y^2 = 1$.
 - (4) Prove that, if x is a rational number then its finite simple continued fraction expansion is always unique provided the last term is not equal to 1.

14